skip to main content


Search for: All records

Creators/Authors contains: "Madrid, J. P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present a pilot study of the atomic neutral hydrogen gas (H i) content of ultra-diffuse galaxy (UDG) candidates. In this paper, we use the pre-pilot Eridanus field data from the Widefield ASKAP L-band Legacy All-sky Blind Survey to search for H i in UDG candidates found in the Systematically Measuring Ultra-diffuse Galaxies survey (SMUDGes). We narrow down to 78 SMUDGes UDG candidates within the maximum radial extents of the Eridanus subgroups for this study. Most SMUDGes UDGs candidates in this study have effective radii smaller than 1.5 kpc and thus fail to meet the defining size threshold. We only find one H i detection, which we classify as a low-surface-brightness dwarf. Six putative UDGs are H i-free. We show the overall distribution of SMUDGes UDG candidates on the size–luminosity relation and compare them with low-mass dwarfs on the atomic gas fraction versus stellar mass scaling relation. There is no correlation between gas-richness and colour indicating that colour is not the sole parameter determining their H i content. The evolutionary paths that drive galaxy morphological changes and UDG formation channels are likely the additional factors to affect the H i content of putative UDGs. The actual numbers of UDGs for the Eridanus and NGC 1332 subgroups are consistent with the predicted abundance of UDGs and the halo virial mass relation, except for the NGC 1407 subgroup, which has a smaller number of UDGs than the predicted number. Different group environments suggest that these putative UDGs are likely formed via the satellite accretion scenario.

     
    more » « less
  2. ABSTRACT

    We present results from our analysis of the Hydra I cluster observed in neutral atomic hydrogen (H i) as part of the Widefield ASKAP L-band Legacy All-sky Blind Survey (WALLABY). These WALLABY observations cover a 60-square-degree field of view with uniform sensitivity and a spatial resolution of 30 arcsec. We use these wide-field observations to investigate the effect of galaxy environment on H i gas removal and star formation quenching by comparing the properties of cluster, infall, and field galaxies extending up to ∼5R200 from the cluster centre. We find a sharp decrease in the H i-detected fraction of infalling galaxies at a projected distance of ∼1.5R200 from the cluster centre from $\sim 85{{\ \rm per\ cent}}$ to $\sim 35{{\ \rm per\ cent}}$. We see evidence for the environment removing gas from the outskirts of H i-detected cluster and infall galaxies through the decrease in the H i to r-band optical disc diameter ratio. These galaxies lie on the star-forming main sequence, indicating that gas removal is not yet affecting the inner star-forming discs and is limited to the galaxy outskirts. Although we do not detect galaxies undergoing galaxy-wide quenching, we do observe a reduction in recent star formation in the outer disc of cluster galaxies, which is likely due to the smaller gas reservoirs present beyond the optical radius in these galaxies. Stacking of H i non-detections with H i masses below $M_{\rm {HI}}\lesssim 10^{8.4}\, \rm {M}_{\odot }$ will be required to probe the H i of galaxies undergoing quenching at distances ≳60 Mpc with WALLABY.

     
    more » « less